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2 Università degli Studi di Parma, Dipartimento di Fisica Teorica, Viale GP Usberti n.7/A
(Parco Area delle Scienze), Parma, Italy

Received 25 December 2007
Published 10 March 2008
Online at stacks.iop.org/JPhysA/41/122004

Abstract
We point out that the transmission eigenvalue density and higher order
correlation functions in chaotic cavities for an arbitrary number of incoming
and outgoing leads (N1, N2) are analytically known from the Jacobi ensemble
of random matrix theory. Using this result and a simple linear statistic, we
give an exact and non-perturbative expression for moments of the form

〈
λm

1

〉
for m > −|N1 − N2| − 1 and β = 2, thus improving the existing results in the
literature. Secondly, we offer an independent derivation of the average density
and higher order correlation function for β = 2, 4 which does not make use
of the orthogonal polynomials technique. This result may be relevant for an
efficient numerical implementation avoiding determinants.

PACS numbers: 73.23.−b, 73.50.Td, 05.45.Mt, 73.63.Kv

1. Introduction

Conductance in mesoscopic systems is currently a very active area of research, both from the
theoretical and the experimental point of view. In the scattering theory framework [1, 2], for
the case of a chaotic cavity with N1 and N2 channels in each of the two attached leads, the
fluctuations of the transmission eigenvalues of the conductor are effectively provided by a
random matrix with appropriate symmetries [3, 4]. More specifically, the Dyson index β of
the ensemble acquires the values 1 or 2 according to the presence or absence of time-reversal
symmetry, or 4 in the case of spin-flip symmetry.

Several quantities of interest for the experiments, such as the conductance and the average
shot noise, may be derived from the knowledge of the transmission eigenvalues {λi}. Those
are defined as the singular values of a transmission matrix t, which in turn is a N1 × N2

off-diagonal block of a Ñ × Ñ unitary scattering matrix (where Ñ = N1 + N2) [5]. In the case
of chaotic cavities considered below, {λj } are correlated random variables between 0 and 1.

1751-8113/08/122004+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/12/122004
http://stacks.iop.org/JPhysA/41/122004


J. Phys. A: Math. Theor. 41 (2008) 122004 Fast Track Communication

Suppose that one is interested in computing the average shot noise 〈P 〉, where

P = P0

N∑
p=1

λp(1 − λp), N = min(N1, N2), (1)

P0 being a constant related to the physical properties of the conductor [5–7]. Until 2005,
results for 〈P 〉 were known only in the limiting cases N1,2 � 1 [2, 8–10], N1 = N2 = 1 [11]
or few open channels [12]. Very recently, a compact form has been found for 〈P 〉/P0 using
two different methods, based on a semiclassical expansion [13] and on recurrence relations
for the Selberg integral [14]. The latter nicely exploits the remarkably simple expression for
the joint probability density (jpd) of transmission eigenvalues:

Pβ(λ1, . . . , λN) = N−1
β

∏
j<k

|λj − λk|β
N∏

i=1

λ
β

2 (|N2−N1|+1)−1
i , 0 � λj � 1, (2)

where the normalization constant is given by [14, 15]:

Nβ =
N−1∏
j=0

�
(
1 + β

2 + j
β

2

)
�

(
β

2 (|N2 − N1| + 1) + j
β

2

)
�

(
1 + j

β

2

)
�

(
1 + β

2

)
�

(
β

2 (|N2 − N1| + 1) + 1 + (N + j − 1)
β

2

) . (3)

A few comments about (2) are in order. The jpd in (2) is stated in [2] without proof and
attributed to Brouwer. A formal proof has been given (using three different methods) by
Forrester [16] in 2006, where the author also highlighted the connection with the jpd of the
Jacobi ensemble of random matrices [15, 17]. In fact, one observes that the change of variables
yj = 1 − 2λj brings (2) to the form

Pβ(y1, . . . , yN) = Ñ−1
β

∏
j<k

|yj − yk|β
N∏

i=1

(1 − yi)
β

2 (|N2−N1|+1)−1, −1 � yj � 1, (4)

allowing to use the machinery and results already known from random matrix theory.
In particular, the average density of transmission eigenvalues

ρβ(λ; N1, N2) =
〈

N∑
i=1

δ(λ − λi)

〉
= N

∫
[0,1]N−1

dλ2 · · · dλNPβ(λ, λ2, . . . , λN) (5)

is of interest for computing linear statistics, i.e. observables of the form 〈trf (tt †)〉

〈tr f (tt †)〉 =
∫ 1

0
dx ρβ(x;N1, N2)f (x). (6)

For example, the moments of the form
〈
λm

1

〉
for a real number m can be computed from (6) as

principle from the knowledge of the average density as〈
λm

1

〉 =
∫ 1

0
dx xmρβ(x;N1, N2), (7)

where the range for m is constrained by the convergence of the integral. The first two moments
are directly related to the normalized conductance (G/G0 = 〈λ1〉) thanks to the Landauer–
Büttiker formula, and to the already mentioned shot noise (P/P0 = 〈λ1〉 − 〈

λ2
1

〉
). A refined

semiclassical treatment of the former can be found in [18].
Surprisingly, the connection with the Jacobi ensemble has not been fully appreciated

so far, with the consequence that the average spectral density ρβ(λ; N1, N2) for finite and
arbitrary number of open channels (N1, N2) is still deemed unknown (see, e.g. [14, 19]). On
the other hand, the density is known in the above mentioned limiting cases [2–4, 8, 12].
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In the mesoscopic literature the Jacobi ensemble is mentioned in the paper by Araújo and
Macêdo [12], where the authors derived the average density of transmission eigenvalues for a
small number of open channels and β = 2 using an auxiliary nonlinear sigma model. Their
result reads

ρ2(λ; N1, N2 < 11) = λµ

N−1∑
n=0

(2n + µ + 1)
{
P (µ,0)

n (1 − 2λ)
}2

, (8)

where µ = β

2 (|N2 − N1| + 1) − 1 = |N2 − N1|, N = min(N1, N2) and P
(α,β)
n (y) is a Jacobi

polynomial.
The authors state in [12]

. . . we believe (although we have no formal proof) that equation (8) is valid for
arbitrary N1 and N2. This result is consistent with the random-matrix approach
of [3, 4], which predicts for the same system a joint distribution of transmission
eigenvalues given by the Jacobi ensemble, from which equation (8) can be derived.
We have thus found independent evidence for the application of the Jacobi ensemble
in this problem.

However, the invoked references [3, 4] do not mention the Jacobi ensemble, and work out
the only case N1 = N2. More precisely

(1) Reference [3] reports the jpd (2) restricted to the case N1 = N2 and β = 1, 2. For

the case β = 2, the term λ
β

2 (|N2−N1|+1)−1
i in the jpd (2) then disappears, making the use

of Legendre polynomials appropriate. For this subcase, the authors derive the average
density and the two-point function, and finally take the large N1 = N2 limit to get the
smoothed macroscopic density ρ2(λ; N1 = N2 � 1) ≈ N/π

√
λ(1 − λ);

(2) Reference [4] deals with all symmetry classes β = 1, 2, 4 and considers the two cases
N1 = N2 � 1 or N1 = N2 = 1. In the first subcase, the authors derive some
quantities of interest with the use of a Coulomb gas approach after the change of variable
λi = 1/(1 + yi), yi ∈ [0,∞).

We wish to clarify that the average density of transmission eigenvalues for any N1 and
N2 is exactly given by the density of the Jacobi ensemble, where the argument of the Jacobi
polynomials is 1 − 2λ (i.e. nothing but (8), for β = 2), and this result descends from the
application of the standard orthogonal polynomial technique [15, 20] to the (modified) jpd (4).
In fact, the Jacobi polynomials P

(µ,0)
n appearing in (8) are precisely the orthogonal polynomials

over [−1, 1] with respect to the weight (1 − y)µ in (4). The cases β = 1 and β = 4 are
more complicated, but can be tackled in the same framework (see [21] and references therein).
Also, nth order correlation functions can be derived for all three symmetry classes [15, 21].
For example, for β = 2 one defines the kernel (see [15], sections 5.7 and 19.1)

KN(x, y) = xµ/2yµ/2
N−1∑
n=0

(2n + µ + 1)P (µ,0)
n (1 − 2x)P (µ,0)

n (1 − 2y), (9)

and the nth order correlation function is written in terms of the (n × n) determinant

ρ2(λ1, . . . , λn) = N !

(N − n)!

∫
[0,1]N−n

dλn+1 . . . dλNPβ(λ1, . . . , λN)

= det[KN(λj , λk)]1�j,k�n. (10)

In particular, the average spectral density (one-point function) is exactly given by

ρ2(λ; N1, N2) = λµ

N−1∑
n=0

(2n + µ + 1)
{
P (µ,0)

n (1 − 2λ)
}2

(11)

3
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extending the result (8) to an arbitrary number of open channels. It can be easily proven that
equation (11) recovers the result by Baranger and Mello [3] for µ → 0.

The purpose of this paper is thus twofold:

• having clarified the role of the Jacobi ensemble, and the known results for its spectral
density for arbitrary N1 and N2, we give a closed form expression for moments of the
form

〈
λm

1

〉
for m > −|N2 − N1| − 1 and β = 2 through a simple integration over the

average density (linear statistic). The formula is exact and non-perturbative, and extends
previous results in the literature (section 2).

• exploiting a less known result by Kaneko, we give an alternative representation for
the average density and higher order correlation functions for β = 2, 4 in terms of
hypergeometric functions of a matrix argument. Thanks to a recent algorithmic progress,
this result may prove useful for a numerical implementation which avoids the use of
determinants (or quaternion determinants) (section 3).

2. A closed form expression for moments

For simplicity, we consider again the β = 2 case as in [12]. The moments
〈
λm

1

〉
can be

computed as a simple linear statistic on the transmission eigenvalues

〈λm
1 〉 =

∫ 1

0
dx xmρ2(x;N1, N2). (12)

Known results about
〈
λm

1

〉
include

(1) Approximate evaluation for all positive integer m (but valid in the regime N1, N2 � 1)
[22, 23]; the generating function for all moments in this limit was first computed in [26].

(2) Exact evaluation (valid for all N1, N2, β) but only up to m = 4 (see [19] and references
therein).

Assuming N1 < N2 without loss of generality, we can use (11) and (12) with N1 = N

and N2 = µ + N〈
λm

1

〉 =
N−1∑
n=0

(2n + µ + 1)

∫ 1

0
dx xµ+mP (µ,0)

n (1 − 2x)P (µ,0)
n (1 − 2x). (13)

After the change of variables x = (1 − t)/2 and the definition of Jacobi polynomials as

P (µ,0)
n (t) = 1

n!

n∑
k=0

(−n)k(µ + n + 1)k(µ + k + 1)n−k

k!

(
1 − t

2

)k

(14)

(where (a)k = �(a + k)/�(a) is a Pochhammer symbol), we obtain

〈
λm

1

〉 = 1

2µ+m+1

N−1∑
n=0

2n + µ + 1

n!

n∑
k=0

(−n)k(µ + n + 1)k(µ + k + 1)n−k

2kk!

×
∫ 1

−1
dt (1 − t)µ+m+kP (µ,0)

n (t). (15)

The integral above can be computed for m > −µ − 1 ([24], formula 7.391.2) in terms of a
hypergeometric function 3F2(−n,µ + n + 1, µ + m + k + 1;µ + 1, µ + m + k + 2; 1). Since the
first argument is a negative integer, the series gets truncated to give eventually)3

〈
λm

1

〉 =
N−1∑
n=0

(2n + µ + 1)

n∑
k,�=0

g(k)g(�)

µ + m + k + � + 1
(16)

3 We are grateful to Marcel Novaes for suggesting significant simplifications in (16).
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Table 1. Comparison between the moments 〈λm
1 〉 computed by Novaes [22] and our exact derivation

(16). Note that the normalization
∫ 1

0 dxρβ(x; N1, N2) = N1 implies that the moments are not
constrained between 0 and 1.

µ N m Exact (16) Approximate (17)

4 57 3 18.4240 18.4248
4 87 7 18.637 18.638

12 47 19 6.767 2 6.770 02
15 57 29 6.679 09 6.681 99
25 75 59 6.343 94 6.347 04

where:

g(κ) = (−1)κ
(

n

κ

) (
n + µ + κ

µ + κ

)
.

Despite lacking the aesthetic appeal of subcases already considered in the literature [19, 22],
formula (16) is nevertheless valid for any (N1, N2) and m > −µ − 1, and is fully non-
perturbative. After implementing (16) in MATHEMATICA R©, one can check by direct inspection
that:

(1) the formula (16) agrees with the approximate result in [22] (valid for N1, N2 � 1)

〈
λm

1

〉 = (µ + 2N)

m∑
p=1

(
m − 1

p − 1

)
(−1)p−1cp−1

(
N(µ + N)

(µ + 2N)2

)p

, (17)

where cp = 1
p+1

(2p

p

)
(see table 1).

(2) The shot noise power 〈P 〉/P0, defined as 〈λ1〉 − 〈
λ2

1

〉
, can be extracted from (16). Thanks

to multiple cancellations, the result can be cast in the very simple form

〈P 〉
P0

= N2(µ + N)2

(µ + 2N − 1)(µ + 2N)(µ + 2N + 1)
(18)

which agrees with the known exact result [13, 14] (see also equation (29) below).
(3) The average conductance 〈G〉/G0 = 〈λ1〉 from (16) can be brought to the simple form:

〈G〉
G0

= N(µ + N)

µ + 2N
(19)

which agrees with the known result [3].

3. A second derivation of the average density and higher order correlation functions

In this section, we will derive an alternative expression for the average density of transmission
eigenvalues and higher order correlation functions for finite N1 and N2 and β = 2, 4, starting
from the jpd (2). Exploiting a variant of the Selberg integral evaluated by Kaneko [26], all
correlation functions can be expressed in terms of a hypergeometric function of a matrix
argument, instead of a determinant of a kernel as in (10) (for β = 2).

Consider the joint probability density of transmission eigenvalues (2)

Pβ(λ1, . . . , λN) = N−1
β

∏
j<k

|λj − λk|β
N∏

i=1

λ
β

2 (|N2−N1|+1)−1
i , 0 � λj � 1, (20)

where N = min(N1, N2), β = 1, 2, 4 and the normalization constant is given by (3).

5
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The density of eigenvalues is given by the following multiple integral:

ρβ(λ1;N1, N2) = N

∫ 1

0
. . .

∫ 1

0
dλ2 · · · dλNPβ(λ1, . . . , λN), (21)

such that the normalization
∫ 1

0 ρβ(x;N1, N2)dx = N holds (where again N = min(N1, N2)).
It turns out that the integral above can be evaluated without the use of the orthogonal

polynomial technique, which would lead to the formula (11), if one resorts to the following
extension of Selberg integral given by Kaneko [26]:∫

[0,1]n

n∏
j=1

dxj

n∏
j=1

x
�1
j (1 − xj )

�2
∏

1�i�n
1�k�m

(xi − tk)
∏
j<k

|xj − xk|β

= C1 2F
(β/2)

1

(
−n,

2

β
(�1 + �2 + m + 1) + n − 1; 2

β
(�1 + m); {t1, . . . , tm}

)
, (22)

where C1 is a known constant and 2F
(α)
1 is a hypergeometric function of a matrix argument.

Details about these objects are provided in the appendix.
From (21), one has

ρβ(λ1;N1, N2) = Nλ
β

2 (|N2−N1|+1)−1
1

Nβ

∫
[0,1]N−1

dλ2 · · · dλN

∏
j<k

|λj − λk|β

×
N∏

i=2

λ
β

2 (|N2−N1|+1)−1
i . (23)

Now, the Vandermonde coupling can be decomposed as∏
j<k

|λj − λk|β =
∏

j<k,j=2

|λj − λk|β
N∏

j=2

|λ1 − λj |β, (24)

and, for β = 2, 4 the absolute value in all products is immaterial. Hence

ρβ(λ1;N1, N2) = Nλ
β

2 (|N2−N1|+1)−1
1

Nβ

∫
[0,1]N−1

dλ2 · · · dλN

∏
j<k,j=2

|λj − λk|β

×
N∏

i=2

λ
β

2 (|N2−N1|+1)−1
i

N∏
j=2

(λj − λ1)
β. (25)

Comparing (25) and (22), after the following identification:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n = N − 1
�1 = β

2 (|N2 − N1| + 1) − 1

�2 = 0
tk = λ1 ∀ k = 1, . . . , m

m = β

one eventually obtains

ρβ(λ1;N1, N2) = NC1λ
β

2 (|N2−N1|+1)−1
1

Nβ

× 2F
(β/2)

1 (1 − N, |N2 − N1| + N + 1; |N2 − N1| + 3 − 2/β; λ11β), (26)

where we have introduced a customary matrix notation in the last argument of the
hypergeometric function. Note that the result (26) is still formally valid for any even
integer β.

6



J. Phys. A: Math. Theor. 41 (2008) 122004 Fast Track Communication

We also observe that higher order correlation functions can be easily written down,
exploiting the very same equation (22). For example, the two-point function ρ

(2)
β (λ1, λ2;

N1, N2) can be written (ignoring prefactors) as

ρ
(2)
β (λ1, λ2;N1, N2) ∝ (λ1λ2)

β

2 (|N2−N1|+1)−1|λ2 − λ1|β

×
∫

[0,1]N−2
dλ3 . . . dλN

∏
i=3

λ
β

2 (|N2−N1|+1)−1
i

∏
j<k,j=3

|λj − λk|β

×
N∏

j=3

|λj − λ1|β
N∏

j=3

|λj − λ2|β (27)

and the (N − 2)-fold integral is again of the same form as (22) for the following values of
parameters: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n = N − 2
�1 = β

2 (|N2 − N1| + 1) − 1

�2 = 0
tk = λ1 ∀ k = 1, . . . , β

tk = λ2 ∀ k = β + 1, . . . , 2β

m = 2β.

Hence, this time the matrix argument of the hypergeometric function is X(2) :=
diag(λ1, . . . , λ1︸ ︷︷ ︸

β times

, λ2, . . . , λ2︸ ︷︷ ︸
β times

). Note that the two-point correlation function ρ
(2)
β (λ1, λ2;

N1, N2) is manifestly symmetric in the two arguments as it should, due to the symmetry
of Jack polynomials (see appendix). It is worth mentioning that higher order correlation
functions can be written down easily along the same lines.

Thanks to a very efficient MATLAB R© implementation of this kind of hypergeometric
functions by Koev and Edelman [27], the density itself, linear statistics (one-dimensional
integrals over the density) and nth order correlation functions can be numerically tackled
very easily. In particular, these results entirely avoid the use of (quaternion) determinants
and (skew-)orthogonal polynomials which would arise from the canonical RMT treatment
and can get computationally demanding for high N1,2 and n. Conversely, the computational
complexity of the algorithm in [27] is only linear in the size of the matrix argument (βn).

In the following, we shall provide some plots of the spectral density for different numbers
of incoming and outgoing leads, and β = 2 (figure 1). The agreement between the two
alternative formulae (11) and (26) is excellent.

As a final check, we also numerically compute the prototype of linear statistics, i.e. the
(normalized) average shot noise power 〈P 〉/P0 (see (1)), defined as

〈P 〉/P0 =
∫ 1

0
dx ρβ(x;N1, N2)x(1 − x), (28)

where ρβ(x;N1, N2) is taken from (26). The result has to agree with the analytical expression
[13, 14]

〈P 〉
P0

= N1(N1 − 1 + 2/β)N2(N2 − 1 + 2/β)

(Ñ − 2 + 2/β)(Ñ − 1 + 2/β)(Ñ − 1 + 4/β)
, (29)

where Ñ = N1 + N2. We compare in table 2 the theoretical result (29) with the numerical
integration of (28), obtained in MATLAB R© with a standard integration routine. The agreement
we found is excellent, thus confirming the correctness of (26).

7
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Figure 1. Density of transmission eigenvalues for β = 2 and different values for the pair (N1, N2).
The plot symbols are used for RMT formula (11), whereas solid lines represent the alternative
formula (26).

(This figure is in colour only in the electronic version)

Table 2. Comparison between the theoretical expression for the average shot-noise power (29)
and the numerical integration of (28), for different values of N1, N2 and β.

N1 N2 β Theory Numerical

4 7 2 0.593 9393 0.593 9393
8 11 2 1.132 1637 1.132 1639
3 9 2 0.424 8251 0.424 8251
4 7 4 0.580 5422 0.580 5424
3 5 4 0.432 6923 0.432 6923

4. Conclusions

We have clarified that the average density of transmission eigenvalues for chaotic cavities is
analytically known from the Jacobi ensemble of random matrices, as well as all higher order
correlation functions. The known formula for the average density coincides with the one
derived with a mapping to a nonlinear sigma model by Araújo and Macêdo, but is rigorously
valid for any number of open channels. With an elementary integration over this density,
we derived a general formula for the moments

〈
λm

1

〉
, which is non-perturbative and valid for

arbitrary large m and β = 2. Also, a second derivation is offered for the spectral density
and higher order correlation functions, which does not make use of orthogonal polynomials
or determinantal structures. Thanks to a recent algorithmic progress, this result, exploiting a

8
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hypergeometric function of a matrix argument, may be numerically easier to implement than
high-order (quaternion) determinants. All the results are consistent with numerical checks and
known formulae in the literature.
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Appendix. Hypergeometric function of a matrix argument

Following Kaneko [26], we first report the definition of the constant C1 appearing in (22)

C1 := Sn,0(�1 + m, �2, β), (A.1)

where

Sn,0(y1, y2, z) :=
n∏

i=1

�
(
i z

2 + 1
)
�

(
y1 + 1 + (i − 1) z

2

)
�

(
y2 + 1 + (i − 1) z

2

)
�

(
z
2 + 1

)
�

(
y1 + y2 + 2 + (n + i − 2) z

2

) . (A.2)

The hypergeometric function of a matrix argument [28] takes a symmetric matrix
(m × m) X as input and provides a real number as output. It is defined as a series of
Jack functions of parameter β, which generalize the Schur function, the zonal polynomial
and the quaternion zonal polynomial to which they reduce for β = 1, 2, 4, respectively.
Given a partition κ of an integer k, i.e. a set of integers κ1 � κ2 � · · · � 0 such that
|κ| = κ1 + κ2 + · · · = k, and a matrix X, the Jack function C(β)

κ (X) is a symmetric and
homogeneous polynomial of degree |κ| in the eigenvalues x1, . . . , xm of X.

The hypergeometric function is defined as

pF (β)
q (a1, . . . , ap; b1, . . . , bq; X) :=

∞∑
k=0

∑
κ�k

(a1)
(β)
κ · · · (ap)(β)

κ

k!(b1)
(β)
κ · · · (bq)

(β)
κ

C(β)
κ (X), (A.3)

where the symbol κ � k means that κ is a partition of k and (a)(β)
κ = ∏

(i,j)∈κ

(
a − i−1

β
+ j −1

)
is a generalized Pochhammer symbol.

The series (A.3) converges for any X if p � q; it converges if maxi |xi | < 1 and p = q +1;
and diverges if p > q + 1, unless it terminates [17, 27, 28].
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Corrigendum

Transmission eigenvalue densities and moments in chaotic cavities from random matrix
theory
Pierpaolo Vivo and Edoardo Vivo 2008 J. Phys. A: Math. Theor. 41 122004

Two misprints in referencing have occurred in the published version of this article.
They are both on page 4.

- After equation 12, after the phrase ‘the generating function for all moments in this limit
was first computed in’, reference [24] (Brouwer) should be cited rather than reference [26].

- After equation 15, after the phrase ‘the integral above can be computed for m > −μ−1’,
reference [25] (Gradshteyn) should be cited rather than reference [24].
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